Modern Lens Antennas For Communications Engineering Full

Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

Navy electricity and electronics training series

Military Pay Increase

This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.
Handbook of Antennas in Wireless Communications

Driven by the demand for high-data-rate, millimeter wave technologies with broad bandwidth are being explored in high-speed wireless communications. These technologies include gigabit wireless personal area networks (WPAN), high-speed wireless local area networks (WLAN), and high-speed wireless metropolitan area networks (WMAN). As a result of this technological push, standard organizations are actively calling for specifications of millimeter wave applications in the above wireless systems. Providing the guidance needed to help you navigate through these new technologies, Millimeter Wave Technology in Wireless PAN, LAN, and MAN covers the fundamental concepts, recent advances, and potential that these millimeter wave technologies will offer with respect to circuits design, system architecture, protocol development, and standardization activities. The book presents essential challenges and solutions related to topics that include millimeter wave monolithic integrated circuit (MMIC), packaging technology of millimeter wave system and circuits, and millimeter wave channel models. With numerous figures, tables and references, this text allows speedy access to the fundamental problems, key challenges, open issues, future directions, and further readings on millimeter wave technologies in relation to WPAN, WLAN, and WMAN.

U.S. Government Research Reports

Modern systems and means of aeronautical radio communication are continuously being improved, but without the development of new technical means, the aviation industry suffers. The development of more innovative plans of aviation technology are needed in order to
respond to the ever-increasing standard of aviation technology. Recent Advances in Satellite Aeronautical Communications Modeling is devoted to the modeling of satellite communication channels for aircraft and RPAS/UAV using the Matlab Simulink and NetCracker software. Featuring research on topics such as channel coding, microwave emitters, and array modeling, this book is ideally designed for scientists, engineers, air traffic controllers, managers, researchers, and academicians.

Modern Antennas

Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems

With the rise of mobile and wireless technologies, more sustainable networks are necessary to support such communications. These next generation networks can now be utilized to strengthen the growing era of the Internet of Things. Powering the Internet of Things With 5G Networks is a comprehensive reference source for the latest scholarly research on the progression and design of fifth generation networks and their role in supporting the Internet of Things. Including a range of perspectives on topics such as privacy and security, large scale monitoring, and scalable architectures, this book is ideally designed for technology developers, academics, researchers, and practitioners interested in the convergence of the Internet of Things and 5G networks.

A New Era in Space Transportation

Modern Antenna Handbook

Provides unique coverage of wireless sensor system applications in space, underwater, underground, and extreme industrial environments in one volume. This book covers the challenging aspects of wireless sensor systems and the problems and conditions encountered when applying them in outer space, under the water, below the ground, and in extreme industrial environments. It explores the unique aspects of designs and solutions that address those problems and challenges, and illuminates the connections, similarities, and differences between the challenges and solutions in those various environments. The creation of Wireless Sensor Systems for Extreme Environments is a response to the spread of wireless sensor technology into fields of health, safety, manufacturing, space, environmental, smart cities, advanced robotics, surveillance, and agriculture. It is the first of its kind to present, in a single reference, the unique aspects of wireless sensor system design, development, and deployment in such extreme environments—and to explore the similarities and possible synergies between them. The application of wireless sensor systems in these varied environments has been lagging dramatically behind their application in more conventional environments, making this an especially relevant book for investigators and practitioners in all of these areas. Wireless Sensor Systems for Extreme Environments is presented in five parts that cover: Wireless Sensor Systems for Extreme Environments—Generic
Modern Lens Antennas for Communications Engineering

Modern Lens Antennas for Communications Engineering

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas. Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world-renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media. Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio—medical engineering in optics and ultrasound, and new materials and integration with signal processing.

Modern Electronic Communication Systems

A guide to the theory and recent development in the medical use of antenna technology. Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information
on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.

Non-Imaging Microwave and Millimetre-Wave Sensors for Concealed Object Detection

Modern Printed-Circuit Antennas

This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume II focuses on feed sources. Reflector antennas are extraordinary devices that combine high gain with geometrical simplicity, and can operate in broad frequency bands. Their performance, however, depends on the electrical characteristics of the feed system with which they operate. This comprehensive volume provides you with a solid understanding of feed system theory, design, and analysis. Featuring chapters authored by experts in each aspect of feed systems, this book takes you from fundamental mathematical techniques, electrically small and large dual reflectors, feed geometry and telemetry, tracking and command antennas, and more. Throughout the book numerous examples are provided to guide you in the practical aspects of feed design.

Novel Advances in Microsystems Technologies and Their Applications

The aim of this book is to present the modem design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas. Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc. The major advantages of lens antennas are narrow beamwidth, high gain, low sidelobes and low noise temperature. Their structures can be more compact and weigh less than horn antennas and parabolic antennas. Lens antennas with their quasi-optical characteristics, also have low loss, particularly at near millimeter and submillimeter wavelengths where they have particular advantages. This book systematically conducts advanced and up-to-date treatment of lens antennas.
Modern Antenna Design

This book describes various methods to enhance the directivity of planar antennas, enabling the next generation of high frequency, wireless communication. The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms. The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described. This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem.

Chinese Journal of Electronics

Why yet another book on antennas? The aim of the authors was to offer a didactic text appropriate for advanced graduate students, as well as a practical work for practicing engineers; to combine a solid theoretical treatment with a practical development which should allow the serious reader to undertake antenna design from first principles. To accomplish these goals, the authors bring together their contributions from both industry and the academic environment. The developments of the various topics start at a level which is accessible to a novice in the speciality, but give a treatment which culminates at an advanced level. Another important feature of the book is its use of practical examples illustrating real engineering problems and designs. In most cases, the explanation is sufficient to grasp the principles of operation of the related equipment, and, where appropriate, the reader is referred to a relevant bibliography for more complete and hence more sophisticated methodologies of design. Of particular note are the chapters on specialist subjects such as antennas and signal theory, and signal processing antennas, showing how the antenna may be combined with signal processing techniques in imaging applications, in angular superresolution, and in adaptive arrays to suppress interference and jamming. Another example is the chapter on the use of polarimetry to enhance the wealth of information which may be extracted, for example, from radar signals.

Proceedings of International Conference on Communication, Circuits, and Systems

The most up-to-date, comprehensive treatment of classical and modern antennas and their related technologies Modern Antenna Handbook represents the most current and complete thinking in the field of antennas. The handbook is edited by one of the most recognizable, prominent, and prolific authors, educators, and researchers on antennas and electromagnetics. Each chapter is authored by one or more leading international experts and includes coverage of current and future antenna-related technology. The information is of a practical nature and is intended to be useful for researchers as well as practicing engineers. From the fundamental parameters of antennas to antennas for mobile wireless communications and medical applications, Modern Antenna Handbook covers everything professional engineers, consultants, researchers, and students need to know about the recent developments and the future direction of this fast-paced field. In addition to antenna topics, the handbook also covers modern technologies such as metamaterials, microelectromechanical systems (MEMS),
frequency selective surfaces (FSS), and radar cross sections (RCS) and their applications to antennas, while five chapters are devoted to advanced numerical/computational methods targeted primarily for the analysis and design of antennas.

Handbook of Research on Next Generation Mobile Communication Systems

Describes applications of time-domain EM reciprocity and the Cagniard-deHoop technique to achieve solutions to fundamental antenna radiation and scattering problems. This book offers an account of applications of the time-domain electromagnetic (TD EM) reciprocity theorem for solving selected problems of antenna theory. It focuses on the development of both TD numerical schemes and analytical methodologies suitable for analyzing TD EM wave fields associated with fundamental antenna topologies. Time-Domain Electromagnetic Reciprocity in Antenna Modeling begins by applying the reciprocity theorem to formulate a fundamentally new TD integral equation technique – the Cagniard-deHoop method of moments (CdH-MoM) – regarding the pulsed EM scattering and radiation from a thin-wire antenna. Subsequent chapters explore the use of TD EM reciprocity to evaluate the impact of a scatterer and a lumped load on the performance of wire antennas and propose a straightforward methodology for incorporating ohmic loss in the introduced solution methodology. Other topics covered in the book include the pulsed EM field coupling to transmission lines, formulation of the CdH-MoM concerning planar antennas, and more. In addition, the book is supplemented with simple MATLAB code implementations, so that readers can test EM reciprocity by conducting (numerical) experiments. In addition, this text: Applies the thin-sheet boundary conditions to incorporate dielectric, conductive and plasmonic properties of planar antennas Provides illustrative numerical examples that validates the described methodologies Presents analyzed problems at a fundamental level so that readers can fully grasp the underlying principles of solution methodologies Includes appendices to supplement material in the book Time-Domain Electromagnetic Reciprocity in Antenna Modeling is an excellent book for researchers and professors in EM modeling and for applied researchers in the industry.

Handbook of Reflector Antennas and Feed Systems Volume III: Applications of Reflectors

The move toward worldwide wireless communications continues at a remarkable pace, and the antenna element of the technology is crucial to its success. With contributions from more than 30 international experts, the Handbook of Antennas in Wireless Communications brings together all of the latest research and results to provide engineering professionals and students with a one-stop reference on the theory, technologies, and applications for indoor, hand-held, mobile, and satellite systems. Beginning with an introduction to wireless communications systems, it offers an in-depth treatment of propagation prediction and fading channels. It then explores antenna technology with discussion of antenna design methods and the various antennas in current use or development for base stations, hand held devices, satellite communications, and shaping beams. The discussions then move to smart antennas and phased array technology, including details on array theory and beamforming techniques. Space diversity, direction-of-arrival estimation, source tracking, and blind source separation methods are addressed, as are the implementation of smart antennas and the results of field trials of systems using smart antennas implemented. Finally, the hot media topic of the safety of mobile phones receives due attention, including details of how the human body...
interacts with the electromagnetic fields of these devices. Its logical development and extensive range of diagrams, figures, and photographs make this handbook easy to follow and provide a clear understanding of design techniques and the performance of finished products. Its unique, comprehensive coverage written by top experts in their fields promises to make the Handbook of Antennas in Wireless Communications the standard reference for the field.

Advanced Computational Electromagnetic Methods

Terahertz Planar Antennas for Next Generation Communication

In response to the ever-increasing global threat of terrorist attacks, the personal screening industry has been growing at a rapid rate. Many methods have been developed for detecting concealed weapons and explosives on the human body. In this important new book, the authors discuss their experiences over the last decade designing and testing microwave and millimetre wave detection and screening systems. It includes examples of actual devices that they have built and tested, along with test results that were obtained in realistic scenarios. The book focuses on the development of non-imaging detection systems, which are similar to radar. These systems do not form a conventional image of the scene and the person(s) being screened. Instead, the sensors detect and analyze the effect that the body, and any concealed objects, has on a transmitted waveform. These systems allow remote detection of both metallic and dielectric devices concealed on the human body in both indoor and outdoor environments. The book discusses a number of sensor types, including active millimetre wave sensors using the direct detection and the heterodyne approach, active microwave sensors for CNR-based object detection, passive millimetre wave sensors, and the role of shielding effects in operating non-imaging MM-wave sensors. The goal of this book is to systemize the test results obtained by the authors, helping specialists to develop improved screening systems in the future. Another goal is to show how the use of non-imaging systems can reduce the cost of the screening process.

Fundamentals of Information and Communication Technologies

The rapid growth of the data traffic demands new ways to achieve high-speed wireless links. The backbone networks, data centers, mission-critical applications, as well as end-users sitting in office or home, all require ultra-high throughput and ultra-low latency wireless links. Sophisticated technological advancement and huge bandwidth are required to reduce the latency. Terahertz band, in this regard, has a huge potential to provide these high-capacity links where a user can download the file in a few seconds. To realize the high-capacity wireless links for future applications, in this book, different aspects of the Terahertz band wireless communication network are presented. This book highlights the Terahertz channel characteristics and modeling, antenna design and beamforming, device characterization, applications, and protocols. It also provides state-of-the-art knowledge on different communication aspects of Terahertz communication and techniques to realize the true potential of the Terahertz band for wireless communication.
Modern Electronic Communication

This book covers the basic issues and principles of information and communication technologies. It explains the key theories, techniques and applications of this field for both academic and professional audiences. Beginning with an overview of information and communication networks and architecture, the text explores information theory, coding and modulation schemes, wave propagation, wireless and wireline communications, network security, network management, network planning and optimisation methods for digital communication networks.

Handbook of Reflector Antennas and Feed Systems Volume II: Feed Systems

Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens’s surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.

Next Generation Wireless Terahertz Communication Networks

A New Era In Space Transportation contains selected papers presented at the 27th International Astronautical Congress, held in Anaheim, California in October 1976. The book presents a survey of the trends and developments in astronomical research in the world. The proceedings cover a variety of points of view on the aspects of space transportation. It is divided into four parts. Part I is devoted to theme sessions, lectures, and a comprehensive look into the American and European programs of space transportation. The second part addresses certain areas in the fields of Engineering and Life Sciences such as Astrodynamics, Bioastronautics, Fluid Dynamics, Materials and
Structures, Propulsion, Fluid Dynamics of Planetary Atmospheres, and Laser Uses in Propulsion. Part III deals with Space Technology and Space Systems. The final part focuses on relevant applications like telecommunications, remote sensing of earth resources, and material processing in space. Engineers, astronomers, astrophysicists, biologists, industrialists, and researchers in the field of space technology will find this book a good source of information.

Antenna and Sensor Technologies in Modern Medical Applications

Modern society thrives on communication that is instant and available at all times, a constant exchange of information that encompasses everything from video streaming to GPS navigation. Experts even suggest that in the near future everything from our cars to our kitchen appliances will be connected to the internet, a feat that would not be possible without advanced wireless technology. Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications showcases current trends and novel approaches in the design and analysis of the antennas that make wireless applications possible, while also identifying unique integration opportunities for antennas and wireless applications to work together. By featuring both theoretical and experimental approaches to integration, this book highlights specific design issues to assist a wide-range of readers including students, researchers, academics, and industry practitioners. This publication features chapters on a broad scope of topics including algorithms and antenna optimization, wireless infrastructure development, wireless applications of intelligent algorithms, antenna architecture, and antenna reconfiguration techniques.

Scientific and Technical Aerospace Reports

The book proposes new technologies and discusses innovative solutions to various problems in the field of communication, circuits, and systems, as reflected in high-quality papers presented at International Conference on Communication, Circuits, and Systems (IC3S 2020) held at KIIT, Bhubaneswar, India from 16-18 October 2020. It brings together new works from academicians, scientists, industry professionals, scholars, and students together to exchange research outcomes and open up new horizons in the areas of signal processing, communications, and devices.

Powering the Internet of Things With 5G Networks

An authoritative guide to the latest developments for the design of low-cost smart antennas Traditional smart antenna systems are costly, consume great amounts of power and are bulky size. Low-cost Smart Antennas offers a guide to designing smart antenna systems that are low cost, low power, and compact in size and can be applied to satellite communications, radar and mobile communications. The authors — noted experts on the topic — provide introductions to the fundamental concepts of antennas, array antennas and smart antennas. The book fills a gap in the literature by presenting the design techniques of low-cost radio frequency (RF) smart antennas as well as approaches for implementing the hardware of the antenna and the beamforming network (BFN). A comprehensive and accessible book, Low-cost Smart
Antennas not only presents an up-to-date review of the topic but includes illustrative case studies that contain in-depth explorations of the theory and technology of smart antennas. While other resources highlight the software (signal processing algorithms), this book is unique by focusing on the antenna hardware. This important book: Offers an introduction to the most recent developments of the design of low-cost smart antennas and their applications Presents a unique book that puts the focus on antenna hardware Includes a variety of case studies that clearly demonstrate the implementation of current design techniques Introduces both fundamental theories as well as more advanced topics Written for students and researchers and antenna engineers, Low-cost Smart Antennas explores the most recent advances in the field with an emphasis on antenna hardware.

Millimeter Wave Technology in Wireless PAN, LAN, and MAN

Microsystems technologies have found their way into an impressive variety of applications, from mobile phones, computers, and displays to smart grids, electric cars, and space shuttles. This multidisciplinary field of research extends the current capabilities of standard integrated circuits in terms of materials and designs and complements them by creating innovative components and smaller systems that require lower power consumption and display better performance. Novel Advances in Microsystems Technologies and their Applications delves into the state of the art and the applications of microsystems and microelectronics-related technologies. Featuring contributions by academic and industrial researchers from around the world, this book: Examines organic and flexible electronics, from polymer solar cell to flexible interconnects for the co-integration of micro-electromechanical systems (MEMS) with complementary metal oxide semiconductors (CMOS) Discusses imaging and display technologies, including MEMS technology in reflective displays, the fabrication of thin-film transistors on glass substrates, and new techniques to display and quickly transmit high-quality images Explores sensor technologies for sensing electrical currents and temperature, monitoring structural health and critical industrial processes, and more Covers biomedical microsystems, including biosensors, point-of-care devices, neural stimulation and recording, and ultra-low-power biomedical systems Written for researchers, engineers, and graduate students in electrical and biomedical engineering, this book reviews groundbreaking technology, trends, and applications in microelectronics. Its coverage of the latest research serves as a source of inspiration for anyone interested in further developing microsystems technologies and creating new applications.

Boundary Conditions in Electromagnetics

This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume III focuses on the range of reflector antenna applications, including space, terrestrial, and radar. The intent of this book volume is to provide practical applications and design information on reflector antennas used for several communications systems. This book covers recent developments of reflector antennas used for satellite communications, terrestrial communications, and remote sensing applications. New subjects are introduced for the first time,
including satellite antennas, Terahertz antennas, PIM, multipaction, corona, deployable mesh reflector antennas, and mechanical aspects of reflector antennas. In addition, this book contains a separate topic on integrated feed assembly for reflector antennas covering analysis, design, fabrication, and test.

Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications

Orthogonal Methods for Array Synthesis

The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array.

Modern Methods of Reflector Antenna Analysis and Design

A comprehensive survey of boundary conditions as applied in antenna and microwave engineering, material physics, optics, and general electromagnetics research. Boundary conditions are essential for determining electromagnetic problems. Working with engineering problems, they provide analytic assistance in mathematical handling of electromagnetic structures, and offer synthetic help for designing new electromagnetic structures. Boundary Conditions in Electromagnetics describes the most-general boundary conditions restricted by linearity and locality, and analyzes basic plane-wave reflection and matching problems associated to a planar boundary in a simple-isotropic medium. This comprehensive text first introduces known special cases of particular familiar forms of boundary conditions — perfect electromagnetic conductor, impedance, and DB boundaries — and then examines various general forms of boundary conditions. Subsequent chapters discuss sesquilinear boundary conditions and practical computations on wave scattering by objects defined by various boundary conditions. The practical applications of less-common boundary conditions, such as for metamaterial and metasurface engineering, are referred to throughout the text. This book: Describes the mathematical analysis of fields associated to given boundary conditions Provides examples of how boundary conditions affect the scattering properties of a particle Contains ample in-chapter exercises and solutions, complete references, and a detailed index Includes appendices containing electromagnetic formulas, Gibbsian 3D dyadics, and four-dimensional formalism Boundary Conditions in Electromagnetics is an authoritative text for electrical engineers and physicists working in electromagnetics research, graduate or post-graduate students studying electromagnetics, and advanced readers interested in electromagnetic theory.
Wireless Sensor Systems for Extreme Environments

This book presents in-depth information on a variety of the latest developments in modern printed-circuit antennas written by several prominent authors in the field. This book consists of nine chapters covering a wide range of recent research topics. The topics covered include low-profile metamaterial-based adaptive beamforming techniques, high performance meta-surface antennas, fractal antennas, reconfigurable antennas for 5G systems operating at 60 GHz, radiation pattern synthesis of planar arrays using parasitic patches fed by a small number of active elements, decoupled and de-scattered monopole MIMO antenna arrays with orthogonal radiation patterns, ultra-wide band antennas with defected ground plane and microstrip line fed for Wi-Fi/Wi-Max/DCS/5G/satellite communications, and design, fabrication, and characterization of wearable textile antennas with high body-antenna isolation.

Electromagnetic Wave Propagation, Radiation, and Scattering

A practical book written for engineers who design and use antennas. The author has many years of hands-on experience designing antennas that were used in such applications as the Venus and Mars missions of NASA. The book covers all important topics of modern antenna design for communications. Numerical methods will be included but only as much as are needed for practical applications.

Recent Advances in Satellite Aeronautical Communications Modeling

Here’s the first complete reference available on all of the modern reflector antenna analysis and design techniques. This book demystifies modern reflector antenna analysis by proceeding from the early numerical integration approaches to today’s powerful techniques, such as the Jacobi-Bessel and Fourier-Bessel Methods.

Low-cost Smart Antennas

This book covers the study of electromagnetic wave theory and describes how electromagnetic technologies affect our daily lives. From ER to ET: How Electromagnetic Technologies Are Changing Our Lives explores electromagnetic wave theory including its founders, scientific underpinnings, ethical issues, and applications through history. Utilizing a format of short essays, this book explains in a balanced, and direct style how electromagnetic technologies are changing the world we live in and the future they may create for us. Quizzes at the end of each chapter provide the reader with a deeper understanding of the material. This book is a valuable resource for microwave engineers of varying levels of experience, and for instructors to motivate their students and add depth to their assignments. In addition, this book: Presents topics that investigate all aspects of electromagnetic technology throughout history. Explores societal and global issues that relate to the field of electrical engineering (emphasized in current ABET accreditation criteria) Includes quizzes relevant to every essay and answers which explain technical perspectives. Rajeev Bansal, PhD, is a professor of Electrical and Computer Engineering at the University of Connecticut.
He is a member of IEEE and the Connecticut Academy of Science and Engineering. He is a Fellow of the Electromagnetics Academy. His editing credits include Fundamentals of Engineering Electromagnetics and Engineering Electromagnetics: Applications. Dr. Bansal contributes regular columns to IEEE Antennas and Propagation Magazine and IEEE Microwave Magazine.

Modern Dictionary of Electronics

The first time that such a complete systematic analysis of the mathematical and numerical techniques related to the orthogonal methods has been given. With the explosion of the wireless world, greater emphasis than ever before is being placed on the effective design of antennas. Orthogonal Methods for Array Synthesis outlines several procedures of orthogonal methods suitable for antenna array synthesis. The book presents a simple approach to the design of antenna arrays to enable the reader to use the classical Orthogonal Method for synthesis of linear arrays. This theory-based book, which includes rapid, effective solutions to design problems for communications applications and broadcasting, is amply illustrated with real-world examples and case studies. Also included in the book is the ORAMA MS Windows-compatible computer tool, patented by Professor Sahalos and his team. Provides comprehensive coverage of the basic principles of orthogonal methods including an analytical explanation of the orthogonal method (OM) and the orthogonal perturbation method (OP) Gives rapid, cost-effective solutions to antenna design problems for communications applications and broadcasting Illustrates all theory with practical applications gleaned from the author's extensive experience in the field of orthogonal advanced methods for antennas Providing a complete guide to the theory and applications of the Orthogonal Methods, this book is a must-read for antenna engineers and graduate students of electrical and computer engineering and physics.

From ER to E.T.

Anyone who has ever shopped for a new smart phone, laptop, or other tech gadget knows that staying connected is crucial. There is a lot of discussion over which service provider offers the best coverage—enabling devices to work anywhere and at any time—with 4G and LTE becoming a pervasive part of our everyday language. The Handbook of Research on Next Generation Mobile Communication Systems offers solutions for optimal connection of mobile devices. From satellite signals to cloud technologies, this handbook focuses on the ways communication is being revolutionized, providing a crucial reference source for consumers, researchers, and business professionals who want to be on the frontline of the next big development in wireless technologies. This publication features a wide variety of research-based articles that discuss the future of topics such as bandwidth, energy-efficient power, device-to-device communication, network security and privacy, predictions for 5G communication systems, spectrum sharing and connectivity, and many other relevant issues that will influence our everyday use of technology.

Time-Domain Electromagnetic Reciprocity in Antenna Modeling